

Collaborators:

Lars Hernquist, Volker Springel, T.J. Cox, Philip F. Hopkins

Merging Galaxies, Starbursts

- •Toomre & Toomre (1972):
- "Galactic collisions can bring deep into a galaxy a fairly sudden supply of interstellar material"
- •Hydrodynamic simulations Mihos & Hernquist (1996) – galactic bridges & tails, starbursts

Merging Galaxies, Starbursts & AGN (fast-forwarding a few years...)

Recent HD Simulations with Black Holes: Springel et al. 2005

(Komossa et al 03) – L_x + detection of fine-structure lines by Spitzer's IRS, NeV (Armus et al 06) – AGN.

Submillimeter Galaxies

What A SMG Is

- Massive galaxies, with SFR of ~500-1000 M_{sun}/yr. Discovered by sub-mm SCUBA surveys in late 90s (Smail et al 97).
- Empirical def of SMGs: F₈₅₀ > 1 mJy. Local ULIRGs are SMGs. Arp 220: F₈₅₀ ~100 mJy. Spectroscopic redshifts for higher redshift population (z ~ 2) obtained by Chapman for ~ 100 sources, median F₈₅₀ ~ few mJy for z~2 population.
- Before Spitzer and SHARC-2
 observations, mostly 450 micron,
 850 micron, radio observations,
 and some mm imaging. Faint at
 infrared wavelengths.

SMM J02399-0136 (Genzel et al 03)

Merging Galaxies, Starbursts, AGN (Feedback) and SMGs – what we don't know

- Are they merging galaxies? [Dasyra et al 06: local ULIRGs – major mergers]
- SMGs at z~2 known to have AGN from X-ray observations (Alexander et al 05). Contribution from AGN to bolometric luminosity not known. Role of AGN in SMG population at z~2 not clear.
- How does feedback from AGN affect transition from z~2 SMG population to present day ellipticals?

How we study SMGs (Feedback-Driven Method of Study)

Simulations of Galaxy Mergers

Compare to observations, refine and calibrate models

CPAC COMPUTERS

Radiative Transfer
Calculations: Images,
SED template factory,
6 panel movies
(Infrared, CO, Lyman
continuum, Lyman-alpha)

Infrared SEDs

- Merging galaxies are often *dusty*: produce a lot of infrared radiation. ULIRGs ($L_{IR} > 10^{12}$ Lsun) and LIRGs ($L_{IR} > 10^{11}$ Lsun) radiate most of their energy in infrared.
- Infrared SED good tool to study them. John How these systems have been studied before:
- 1. Observational templates
- 2. Radiative transfer solutions for static templates (toroidal models/axisymmetric)

Improvement: we combine information from SPH merger simulations and three-dimensional radiative transfer calculations: Chakrabarti & Whitney 2007

From Sanders & Mirabel (1996)

Outline of Talk

•Simulations with AGN Feedback and starburst feedback for local LIRGS & ULIRGS - evolution of far-IR SEDs. *Cold-Warm IRAS classification*.

Scheme for SMGs

- •General trends: do these two kinds of feedback affect the evolutionary history differently?
- Submillimeter Galaxies at z ~ 2:
 Photometric Properties: IRAC color-color plot
 What is the Role of AGN in SMGs:
 Infrared X-ray correlations
 Photo Albums of SMGs during their lifetimes
 Preliminary Classfication & Evolutionary

- **Smooth Particle Hydrodynamics** (Springel 2005), dark matter, stars, gas, black hole. Binary "major" merger simulations. Star formation processes treated in prescriptive way, with Kennicutt-Schmidt implementation. Star Formation in Clusters is not well understood. *Many state of the* art simulations still treat formation of stars in cores, not clusters! (e.g. extensions of isolated star formation models). Massive stars form in a clustered mode.
- Large dynamic range subgrid model for interstellar medium (Springel & Hernquist 2003). Motivated by observations of GMCs include turbulent pressure in modeling ISM–Chakrabarti et al. 2006a. σ ~ 10 c_{s,}, P_{turb} ~ 100 P_{thermal}.

Merger Simulations

Black hole swallows gas from local neighborhood – (after Di Matteo)

General Trends: Cold-Warm Transition

solid line: AGN feedback

dotted: η =0.5, dashed: η =0.05,

Dash dotted: η =0.005

- •AGN feedback: generally disperses gas more effectively – lower columns – more high frequency flux.
- •Source of illumination irrelevant
- •Note trends in increasing F(25)/F(60) with increasing mass loading efficiency of starburst winds.

Chakrabarti, et al. (2006a) Accepted to ApJ, Astro-ph/0605652 **IRAC** color-color plot

Lacy et al. (2004) from Spitzer FLS. Dashed lines mark "AGN-demarcated region"

IRAC color-color plots

 What is the clustering in the color-color plot due to? (Chakrabarti et al. 2006b,astroph/0610860) Unfolding IRAC color-color plots – what the sims can do

 Clustering in color-color plots – correlated with time spent in region of color space and stars dominating in bolometric luminosity output.

IRAC color-color plot

Bunny-ear shape

IRAC color-color plot in rest-frame

IRAC color-color plot for z=0.3 slice, bunny- ear shape.

Life of A Sub-mm Galaxy: Time

Towards A Classification Scheme for SMGs

 SMGs are a broader class of objects than quasars or starbursts and traverse the Class I – Class II divide, Chakrabarti et al. 2006b, astro-ph/0610860

Towards An Evolutionary Scheme for SMGs

Main Points of Talk

- Major merger simulations to understand z~2
 population of SMGs and local ULIRGs. (Local
 ULIRGs known to be merging systems)
- Confirm well-known correlations cold-warm transition for local ULIRGs from radiative transfer solutions.
- Unfolding IRAC color-color plot. Clustering.
- SMGs broader class of objects than starbursts or quasars. Photometric properties: many of the brighter SMGs will have energetically active AGN. Can be classified on the basis of L_{IR}-L_x ratios: Class I (pre-merger), Class II (close to main feedback phase), Class III (merger remnant)
- THANKS!